CSE4421/5324: Introduction to Robotics

Contact Information

- Burton Ma Lassonde 2046 <u>burton@cse.yorku.ca</u>
- ▶ EECS4421/5324 lectures Monday, Wednesday, Friday 1:30-2:30PM (SLH C) Lab I Thursday 12:30-2:30, Prism 1004 Lab 2 Thursday 2:30-4:30, Prism 1004
- www.eecs.yorku.ca/course/4421(web site not complete yet)

General Course Information

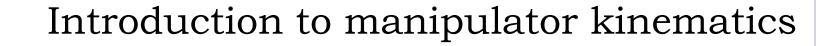
Introduces the basic concepts of robotic manipulators and autonomous systems. After a review of some fundamental mathematics the course examines the mechanics and dynamics of robot arms, mobile robots, their sensors and algorithms for controlling them.

Textbook

- no required textbook
- first 6 weeks of course uses notation consistent with Robot Modeling and Control by MW Spong, S Hutchinson, M Vidyasagar

Assessment

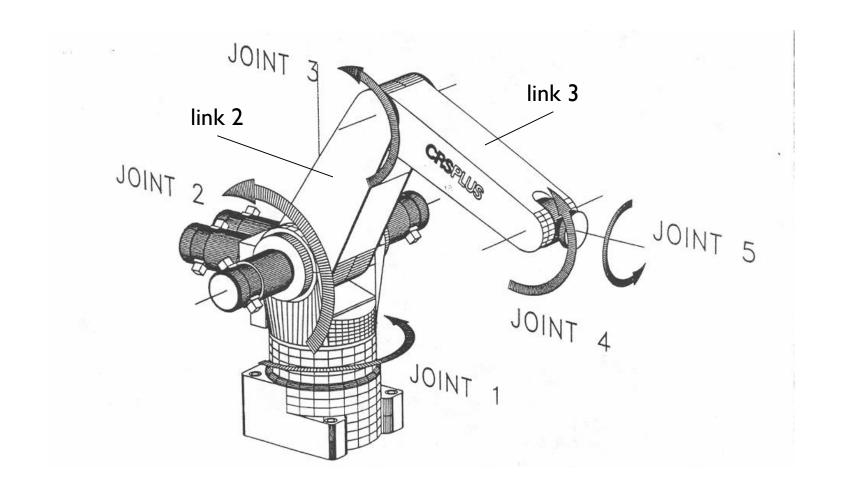
- ▶ labs/assignments 6 x 5%
- midterm, 30%
- exam, 40%



Robotic Manipulators

- a robotic manipulator is a kinematic chain
 - i.e. an assembly of pairs of rigid bodies that can move respect to one another via a mechanical constraint
- the rigid bodies are called links
- the mechanical constraints are called joints

A150 Robotic Arm



Joints

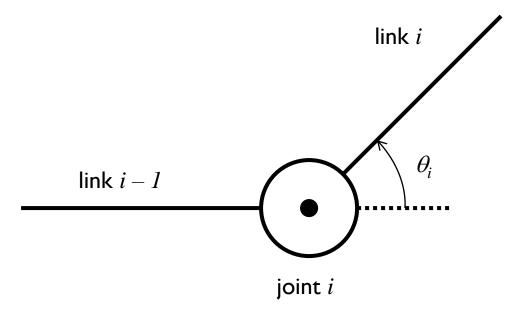
- most manipulator joints are one of two types
- revolute (or rotary)
 - like a hinge
- prismatic (or linear)
 - like a piston
- our convention: joint i connects link i-1 to link i
 - when joint i is actuated, link i moves

Joint Variables

- revolute and prismatic joints are one degree of freedom (DOF) joints; thus, they can be described using a single numeric value called a joint variable
- I. revolute
 - $q_i = \theta_i$: angle of rotation of link i relative to link i-1
- 2. prismatic
 - $q_i = d_i$: displacement of link i relative to link i-1

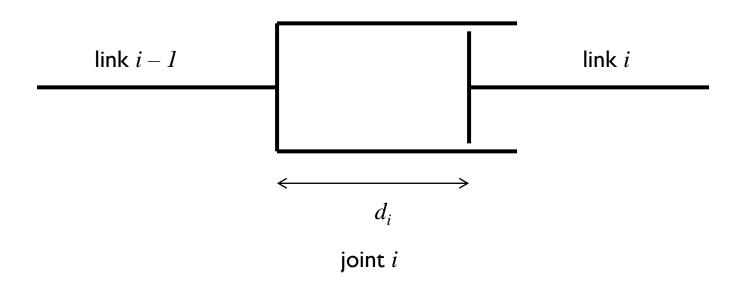
Revolute Joint Variable

- revolute
 - like a hinge
 - allows relative rotation about a fixed axis between two links
 - \triangleright axis of rotation is the z axis by convention
- joint variable $q_i = \theta_i$: angle of rotation of link i relative to link i-1



Prismatic Joint Variable

- prismatic
 - like a piston
 - allows relative translation along a fixed axis between two links
 - \triangleright axis of translation is the z axis by convention
 - joint variable $q_i = d_i$: displacement of link i relative to link i-1



Common Manipulator Arrangments

- most industrial manipulators have six or fewer joints
 - the first three joints are the arm
 - the remaining joints are the wrist
- it is common to describe such manipulators using the joints of the arm
 - R: revolute joint
 - P: prismatic joint

Articulated Manipulator

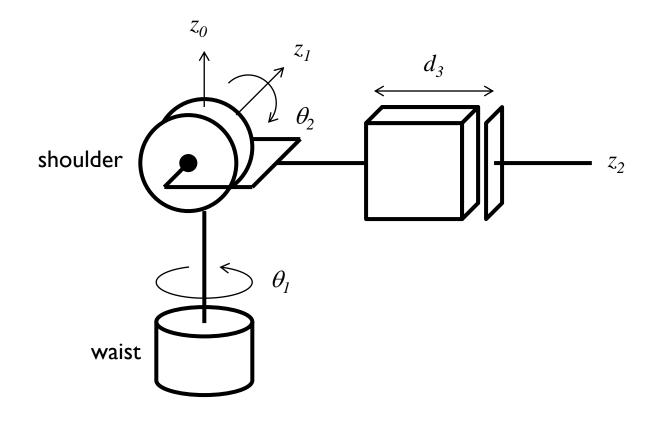
- RRR (first three joints are all revolute)
- joint axes

 $\rightarrow z_0$: waist

 z_1 : shoulder (perpendicular to z_0) z_0 \triangleright z_2 : elbow (parallel to z_1) z_1 \mathcal{Z}_2 θ_2 shoulder forearm elbow θ_1 waist

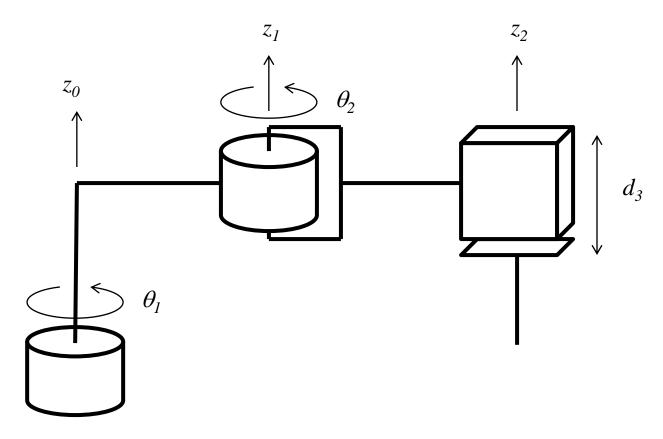
Spherical Manipulator

- RRP
- Stanford arm
 - http://infolab.stanford.edu/pub/voy/museum/pictures/display/robots/IMG_2404ArmFrontPeekingOut.JPG



SCARA Manipulator

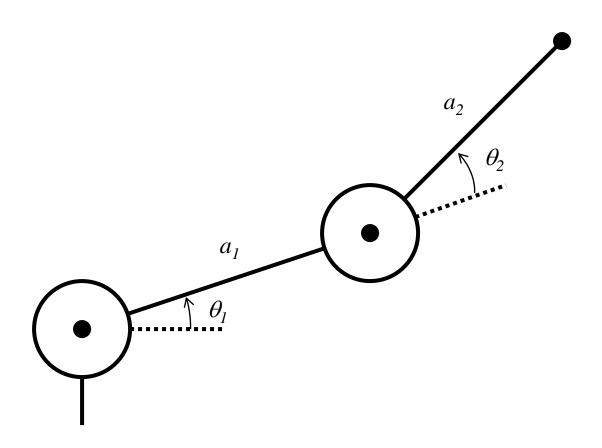
- RRP
- Selective Compliant Articulated Robot for Assembly
 - http://www.robots.epson.com/products/g-series.htm



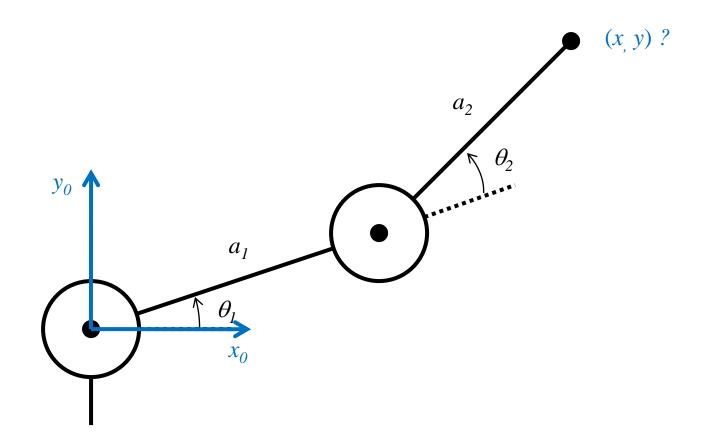
Parallel Robots

- all of the preceding examples are examples of serial chains
 - base (link 0) is connected to link I by a joint
 - link I is connected to link 2 by a joint
 - link 2 is connected to link 3 by a joint ... and so on
- a parallel robot is formed by connecting two or more serial chains
 - https://www.youtube.com/watch?v=pILrz0gPvOA

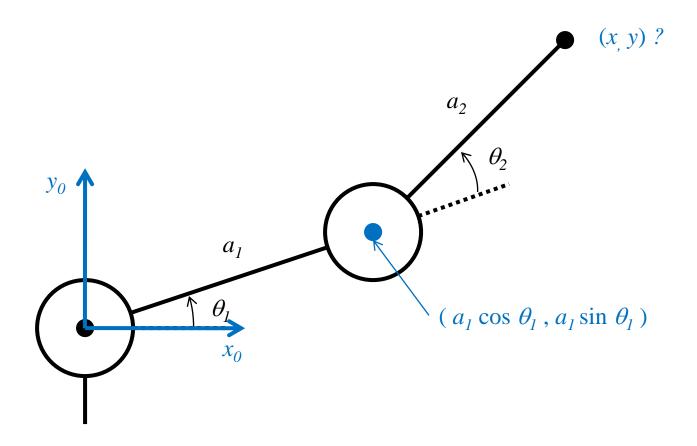
given the joint variables and dimensions of the links what is the position and orientation of the end effector?



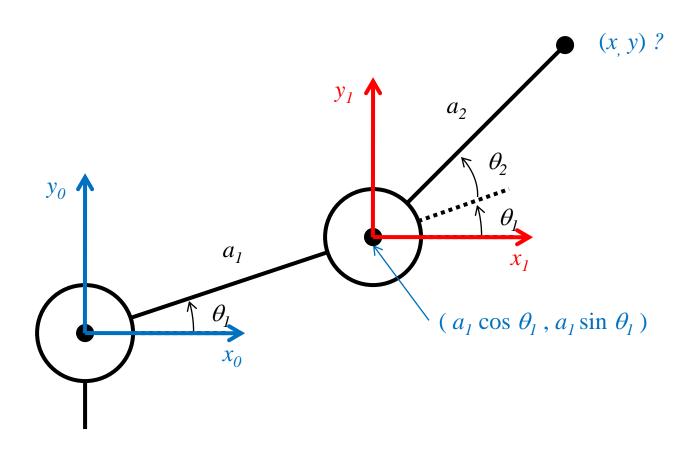
- choose the base coordinate frame of the robot
 - we want (x, y) to be expressed in this frame



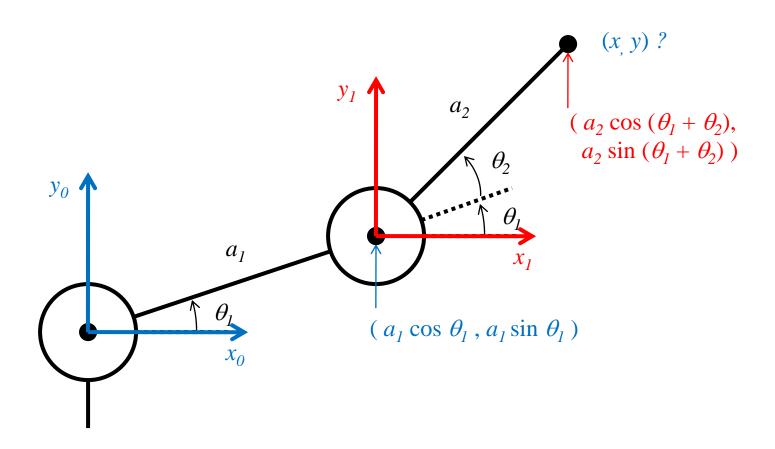
 \blacktriangleright notice that link 1 moves in a circle centered on the base frame origin



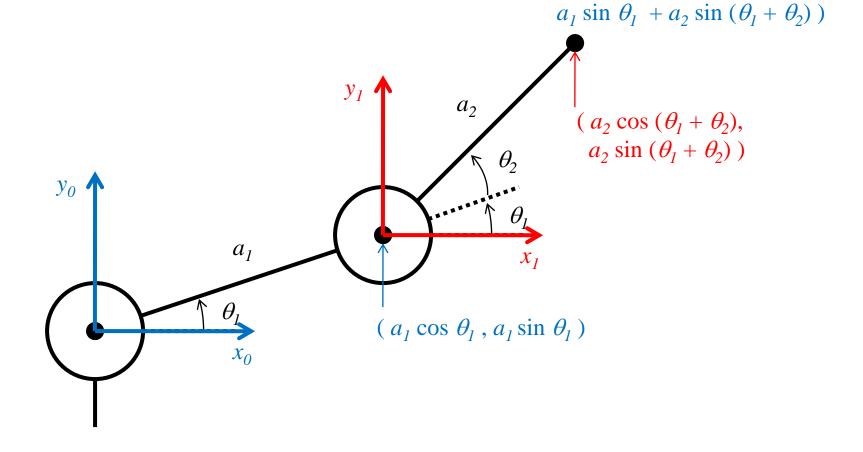
 \blacktriangleright choose a coordinate frame with origin located on joint 2 with the same orientation as the base frame



notice that link 2 moves in a circle centered on frame 1



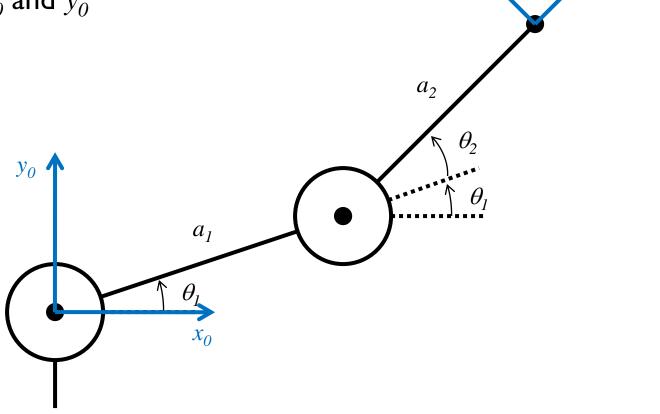
because the base frame and frame I have the same orientation, we can sum the coordinates to find the position of the end effector in the base frame $(a_1 \cos \theta_1 + a_2 \cos (\theta_1 + \theta_2),$



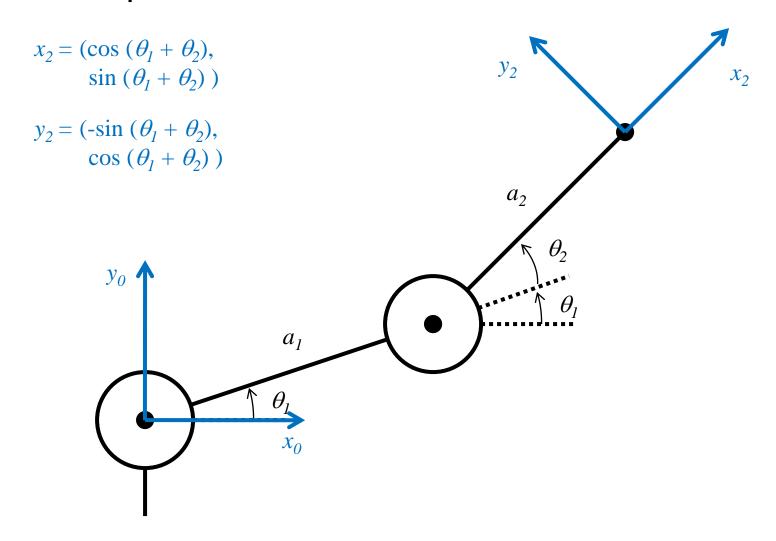
we also want the orientation of frame 2 with respect to the base frame

 y_2

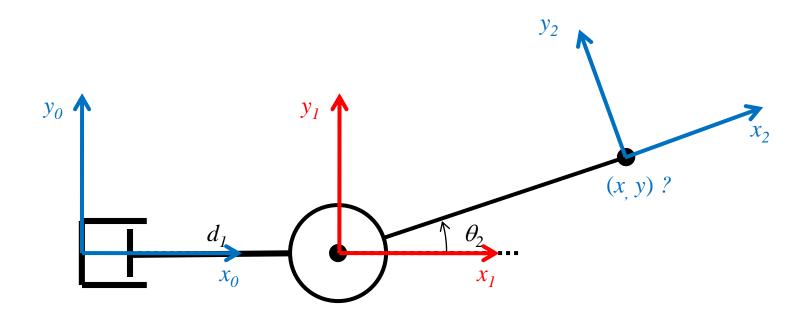
• x_2 and y_2 expressed in terms of x_0 and y_0



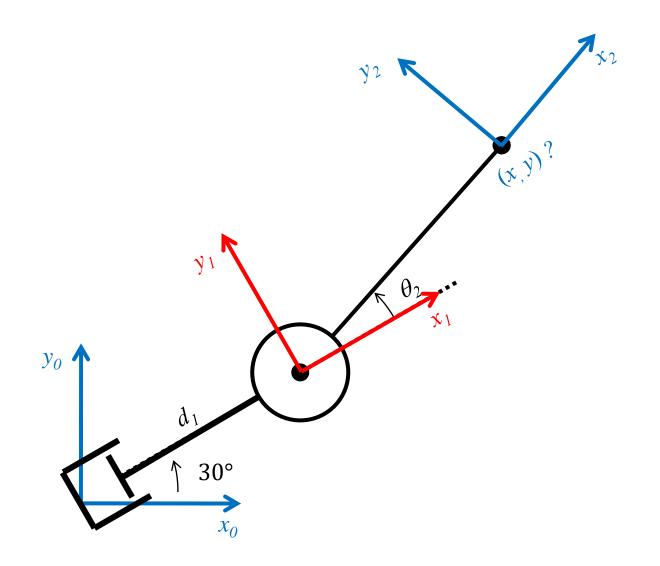
without proof I claim:



• find $(x, y), x_2$, and y_2 expressed in frame 0

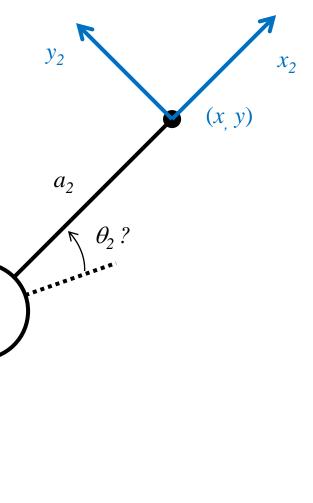


• find $(x, y), x_2$, and y_2 expressed in frame 0



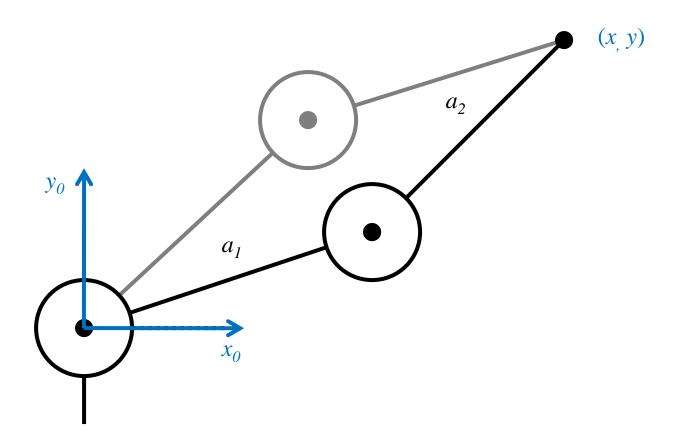
 y_0

p given the position (and possibly the orientation) of the end effector, and the dimensions of the links, what are the joint variables?



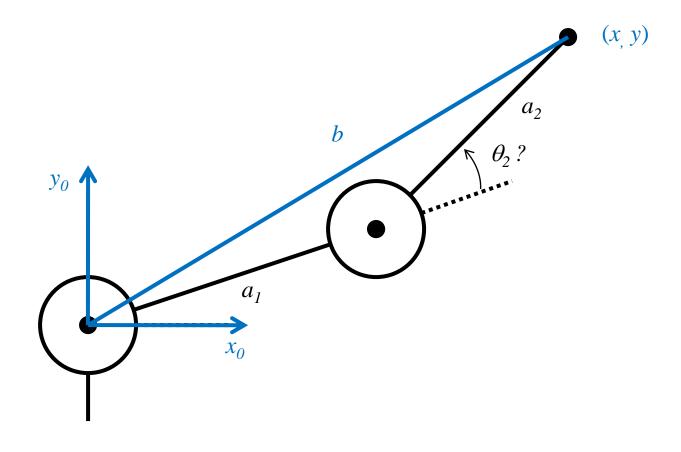
 a_1

 harder than forward kinematics because there is often more than one possible solution



law of cosines

$$b^{2} = a_{1}^{2} + a_{2}^{2} - 2a_{1}a_{2}\cos(\pi - \theta_{2}) = x^{2} + y^{2}$$



$$-\cos(\pi - \theta_2) = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}$$

and we have the trigonometric identity

$$-\cos(\pi - \theta_2) = \cos(\theta_2)$$

therefore,

$$\cos\theta_2 = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1a_2} = C_2$$

We could take the inverse cosine, but this gives only one of the two solutions.

Instead, use the two trigonometric identities:

$$\sin^2 \theta + \cos^2 \theta_2 = 1$$
 $\tan \theta = \frac{\sin \theta}{\cos \theta}$

to obtain

$$\theta_2 = \tan^{-1} \frac{\pm \sqrt{1 - C_2^2}}{C_2}$$

which yields both solutions for θ_2 . In many programming languages you would use the four quadrant inverse tangent function atan2

```
c2 = (x*x + y*y - a1*a1 - a2*a2) / (2*a1*a2);

s2 = sqrt(1 - c2*c2);

theta21 = atan2(s2, c2);

theta22 = atan2(-s2, c2);
```

Exercise for the student: show that

$$\theta_1 = \tan^{-1} \left(\frac{y}{x} \right) - \tan^{-1} \left(\frac{a_2 \sin \theta_2}{a_1 + a_2 \cos \theta_2} \right)$$

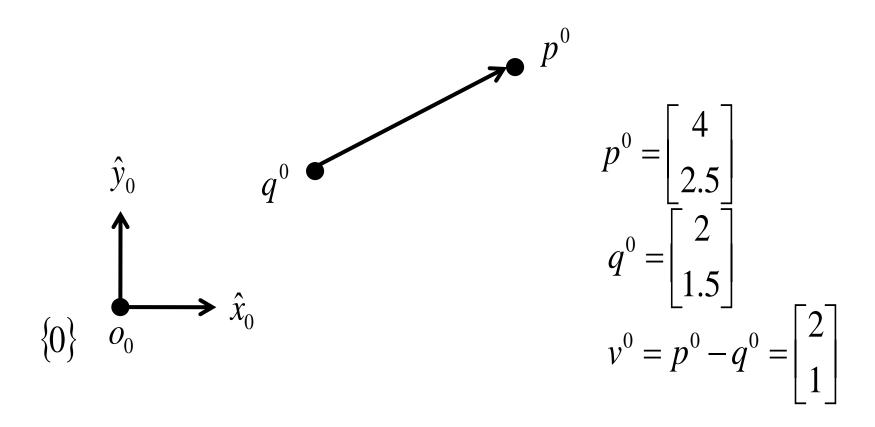
Points and Vectors

- point : a location in space
- vector : magnitude (length) and direction between two points



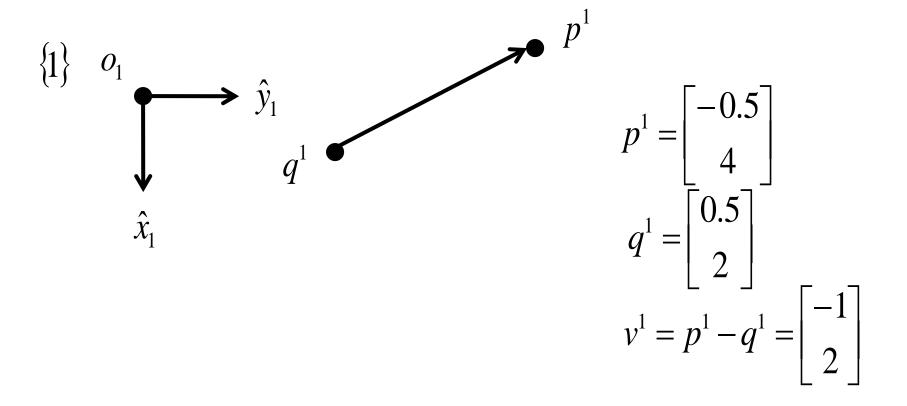
Coordinate Frames

 choosing a frame (a point and two perpendicular vectors of unit length) allows us to assign coordinates



Coordinate Frames

the coordinates change depending on the choice of frame

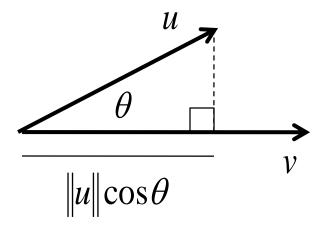


Dot Product

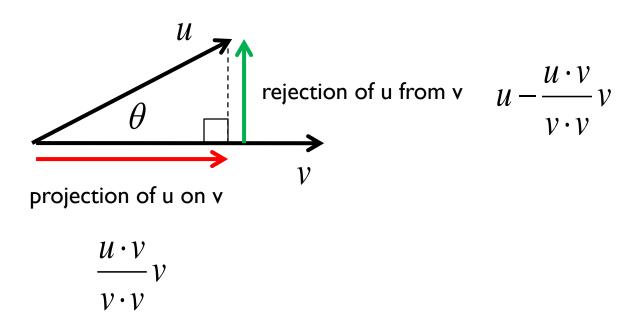
the dot product of two vectors

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \qquad v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \qquad u \cdot v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = u^T v$$

$$u \cdot v = ||u||||v|| \cos \theta$$

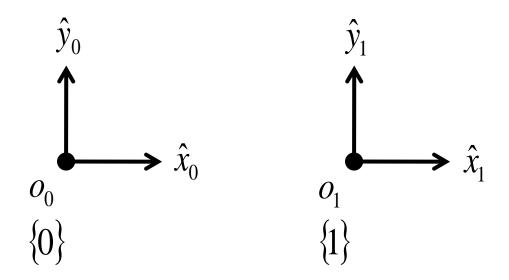


Vector Projection and Rejection



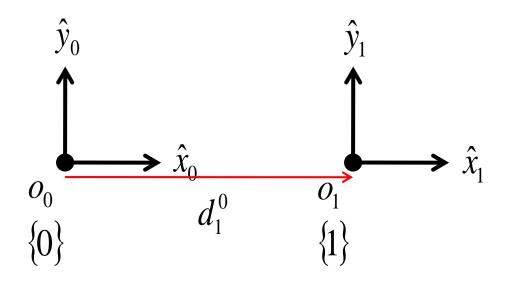
• if u and v are unit vectors (have magnitude equal to 1) then the projection becomes

$$\hat{u}\cdot\hat{v}\,\hat{v}$$



• suppose we are given o_1 expressed in $\{0\}$

$$o_1^0 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

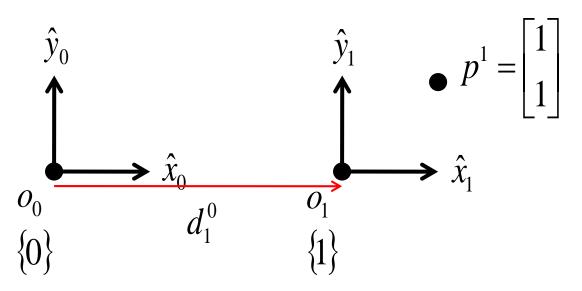


▶ the location of {1} expressed in {0}

$$d_1^0 = o_1^0 - o_0^0 = \begin{bmatrix} 3 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

the translation vector d_j^i can be interpreted as the location of frame $\{j\}$ expressed in frame $\{i\}$

a point expressed in frame $\{1\}$



 $ightharpoonup p^1$ expressed in $\{0\}$

$$p^{0} = d_{1}^{0} + p^{1} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

the translation vector d_j^i can be interpreted as a coordinate transformation of a point from frame $\{j\}$ to frame $\{i\}$

$$p^{0} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad \hat{y}_{0} \qquad \qquad q^{0} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$0_{0} \qquad \qquad \hat{x}_{0}$$

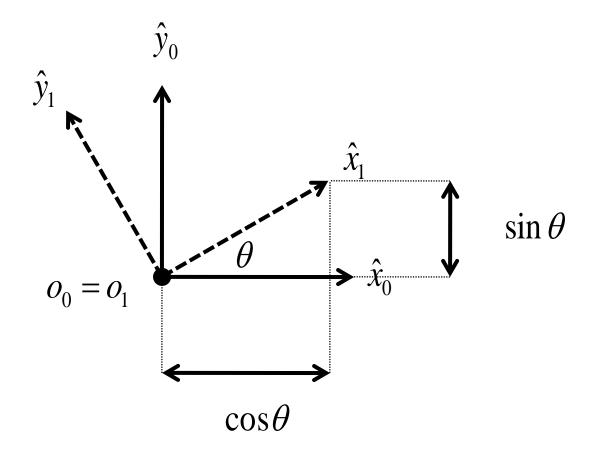
$$\{0\}$$

 $ightharpoonup q^0$ expressed in $\{0\}$

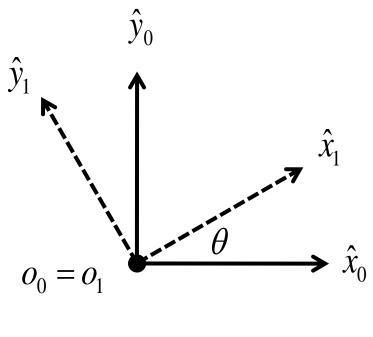
$$q^{0} = d + p^{0} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

the translation vector d can be interpreted as an operator that takes a point and moves it to a new point in the same frame

• suppose that frame $\{1\}$ is rotated relative to frame $\{0\}$



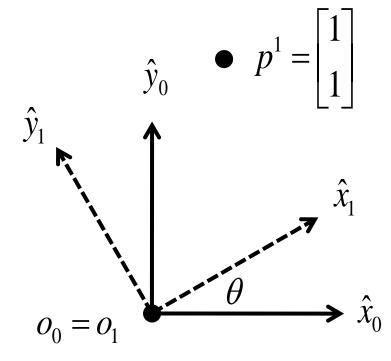
 \blacktriangleright the orientation of frame $\{1\}$ expressed in $\{0\}$



$$R_1^0 = \begin{bmatrix} x_1 \cdot x_0 & y_1 \cdot x_0 \\ x_1 \cdot y_0 & y_1 \cdot y_0 \end{bmatrix}$$

the rotation matrix R_j^i can be interpreted as the orientation of frame $\{j\}$ expressed in frame $\{i\}$

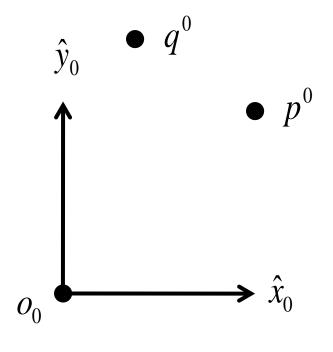
 $ightharpoonup p^1$ expressed in $\{0\}$



$$p^{0} = R_{1}^{0} p^{1} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

the rotation matrix R_j^i can be interpreted as a coordinate transformation of a point from frame $\{j\}$ to frame $\{i\}$

• q^0 expressed in $\{0\}$



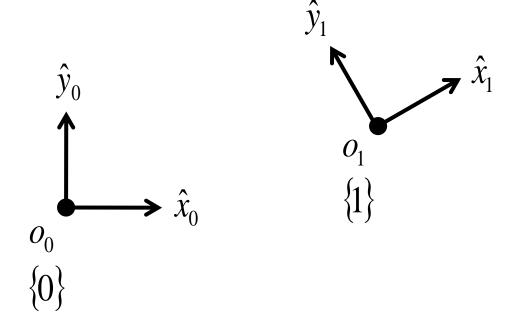
$$q^{0} = R p^{0} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

3. the rotation matrix R can be interpreted as an operator that takes a point and moves it to a new point in the same frame

Properties of Rotation Matrices

- $R^T = R^{-1}$
- \blacktriangleright the columns of R are mutually orthogonal
- each column of R is a unit vector
- ightharpoonup det R=1 (the determinant is equal to 1)

Rotation and Translation



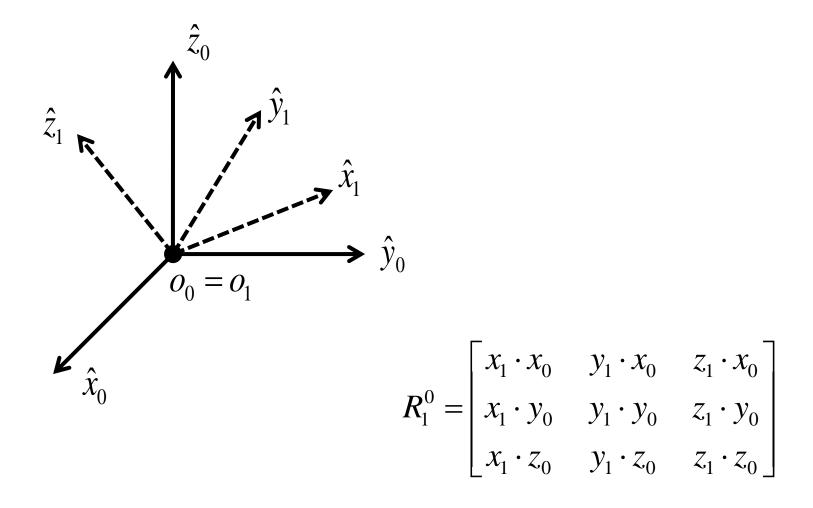
Rotations in 3D

$$R_1^0 = \begin{bmatrix} x_1 \cdot x_0 & y_1 \cdot x_0 & z_1 \cdot x_0 \\ x_1 \cdot y_0 & y_1 \cdot y_0 & z_1 \cdot y_0 \\ x_1 \cdot z_0 & y_1 \cdot z_0 & z_1 \cdot z_0 \end{bmatrix}$$

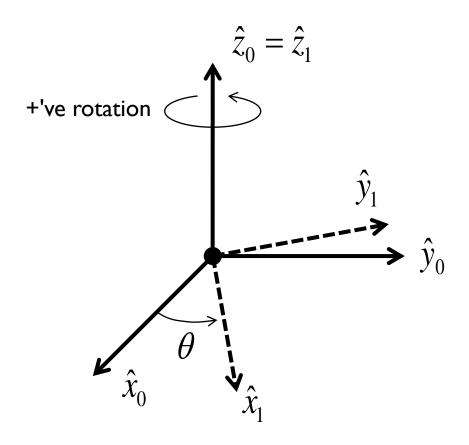
Properties of Rotation Matrices

- $R^T = R^{-1}$
- \blacktriangleright the columns of R are mutually orthogonal
- each column of R is a unit vector
- ightharpoonup det R=1 (the determinant is equal to 1)

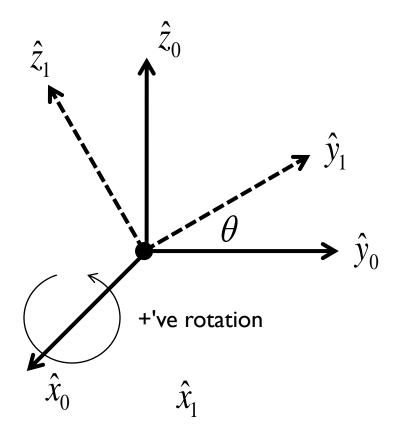
Rotations in 3D



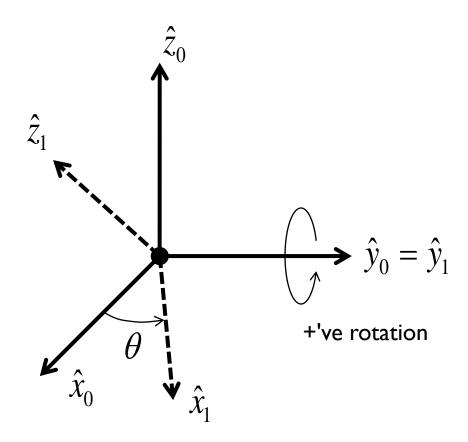
Rotation About z-axis



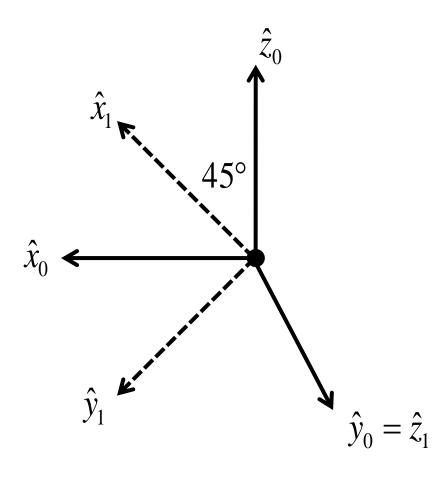
Rotation About x-axis



Rotation About y-axis



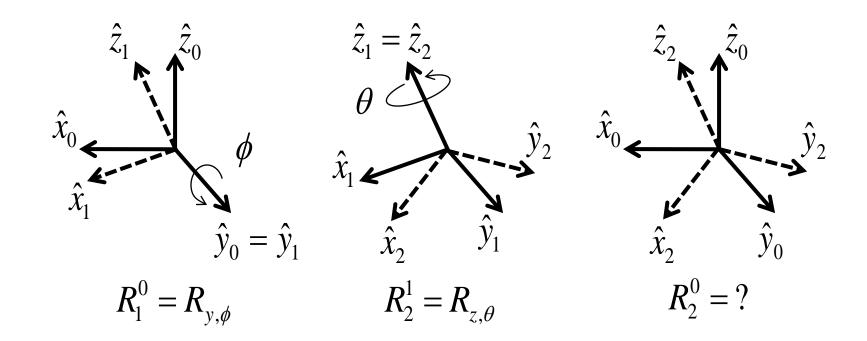
Relative Orientation Example



Successive Rotations in Moving Frames

- 1. Suppose you perform a rotation in frame {0} to obtain {1}.
- 2. Then you perform a rotation in frame {1} to obtain {2}.

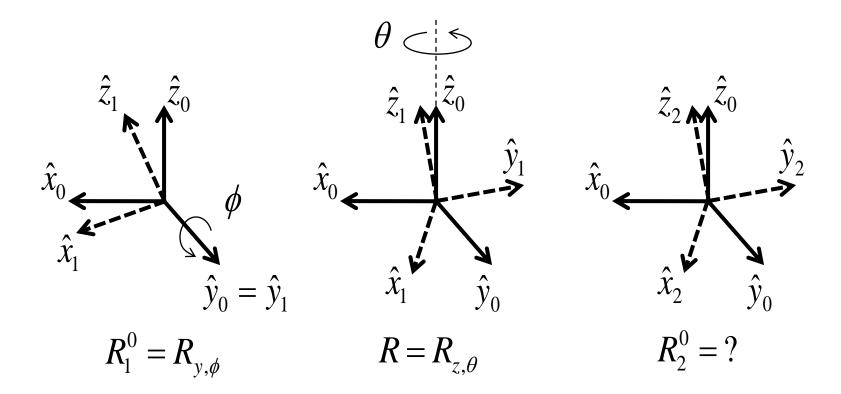
What is the orientation of $\{2\}$ relative to $\{0\}$?



Successive Rotations in a Fixed Frame

- 1. Suppose you perform a rotation in frame {0} to obtain {1}.
- 2. Then you rotate {1} in frame {0} to obtain {2}.

What is the orientation of $\{2\}$ relative to $\{0\}$?



Composition of Rotations

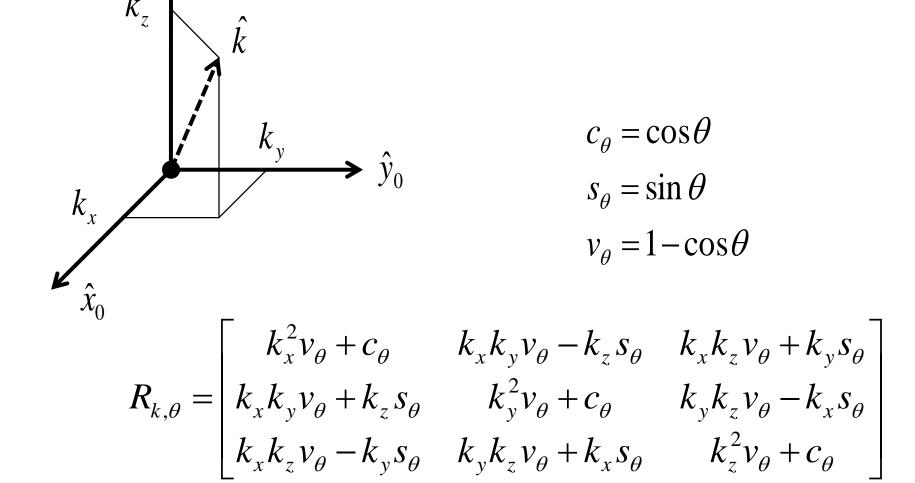
- I. Given a fixed frame $\{{f 0}\}$ and a current frame $\{{f I}\}$ and R_1^0
 - if $\{2\}$ is obtained by a rotation R in the current frame $\{1\}$ then use postmulitplication to obtain:

$$R = R_{2}^{1}$$
 and $R_{2}^{0} = R_{1}^{0}R_{2}^{1}$

- 2. Given a fixed frame {0} and a frame {1} and
 - if $\{2\}$ is obtained by a rotation R in the fixed frame $\{0\}$ then use premultiplication to obtain:

$$R_{2}^{0} = RR_{1}^{0}$$

Rotation About a Unit Axis



- translation represented by a vector d
 - vector addition
- rotation represented by a matrix R
 - matrix-matrix and matrix-vector multiplication
- convenient to have a uniform representation of translation and rotation
 - obviously vector addition will not work for rotation
 - can we use matrix multiplication to represent translation?

 \blacktriangleright consider moving a point p by a translation vector d

$$p + d = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix} = \begin{bmatrix} p_x + d_x \\ p_y + d_y \\ p_z + d_z \end{bmatrix}$$

$$\begin{bmatrix}
p_x \\
p_y \\
p_z
\end{bmatrix} = \begin{bmatrix}
p_x + d_x \\
p_y + d_y \\
p_z + d_z
\end{bmatrix}$$

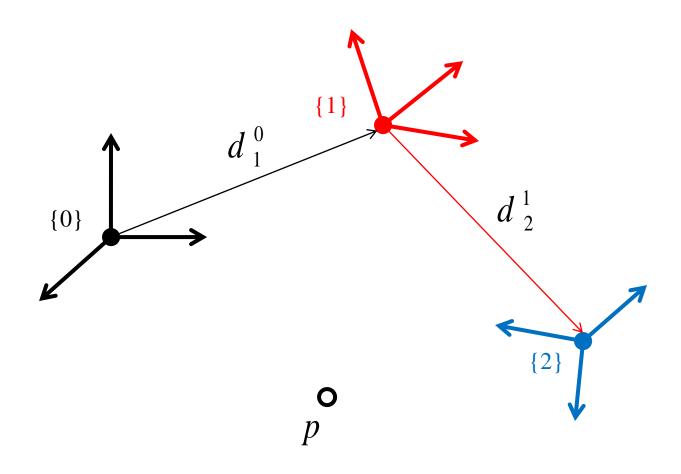
not possible as matrix-vector multiplication always leaves the origin unchanged

lacktriangle consider an augmented vector p_h and an augmented matrix D

$$p_{h} = \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

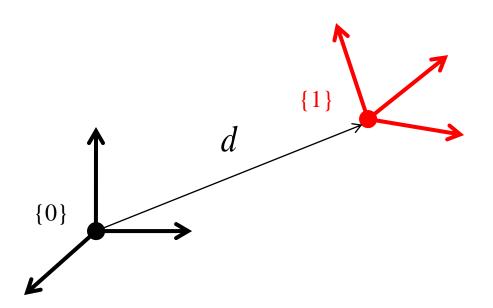
$$Dp_{h} = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} p_{x} + d_{x} \\ p_{y} + d_{y} \\ p_{z} + d_{z} \\ 1 \end{bmatrix}$$

lacktriangle the augmented form of a rotation matrix $R_{3\mathrm{x}3}$



- suppose {1} is a rotated and translated relative to {0}
- what is the pose (the orientation and position) of $\{1\}$ expressed in $\{0\}$?

$$T_{1}^{0} = ?$$



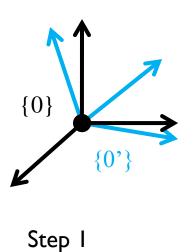
 suppose we use the moving frame interpretation (postmultiply transformation matrices)

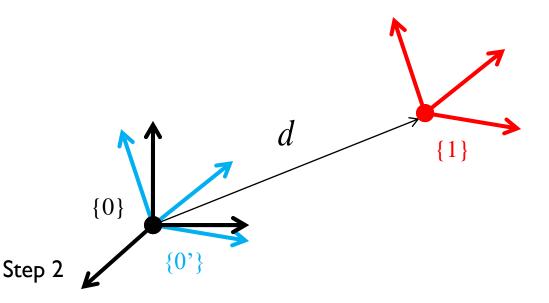
translate in $\{0\}$ to get $\{0'\}$ and then rotate in $\{0'\}$ to get $\{1\}$ {0} d{0} Step I Step 2

 suppose we use the fixed frame interpretation (premultiply transformation matrices)

```
I. rotate in \{0\} to get \{0'\}
```

2. and then translate in $\{0\}$ in to get $\{1\}$ DR





both interpretations yield the same transformation

Homogeneous Representation

- every rigid-body transformation can be represented as a rotation followed by a translation in the same frame
 - as a 4x4 matrix

$$T = \begin{bmatrix} R & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where R is a 3×3 rotation matrix and d is a 3×1 translation vector

Homogeneous Representation

- in some frame *i*
 - points

$$P^i = \begin{bmatrix} p^i \\ 1 \end{bmatrix}$$

vectors

$$V^i = \begin{bmatrix} v^i \\ 0 \end{bmatrix}$$

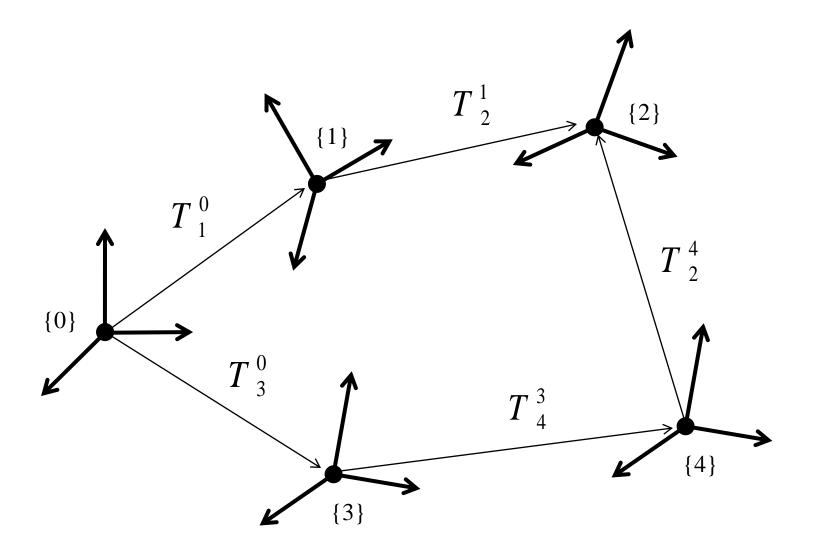
Inverse Transformation

- the inverse of a transformation undoes the original transformation
 - if

$$T = \begin{bmatrix} R & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

then

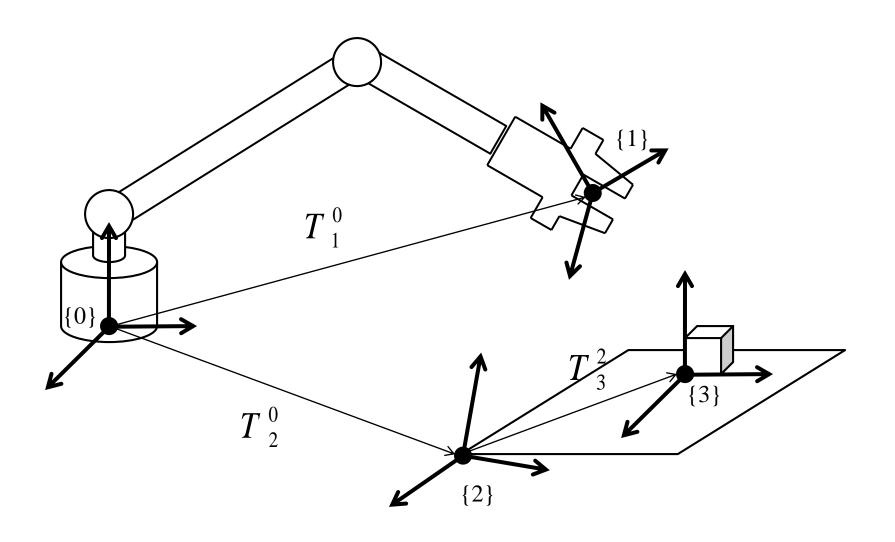
$$T^{-1} = \begin{bmatrix} R^T & -R^T d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



give expressions for:

 T_{2}^{0}

 T_4^3



how can you find

 T_{1}^{0}

 T_{2}^{0}

 T_3^2

 T_{3}^{1}