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Contact Information

» Burton Ma
Lassonde 2046

» EECS4421/5324
lectures Monday, Wednesday, Friday 1:30-2:30PM (SLH C)
Lab | Thursday 12:30-2:30, Prism 1004
Lab 2 Thursday 2:30-4:30, Prism 1004

4
(web site not complete yet)


mailto:burton@cse.yorku.ca
http://www.cse.yorku.ca/course/4431

General Course Information

» introduces the basic concepts of robotic manipulators and
autonomous systems. After a review of some fundamental
mathematics the course examines the mechanics and
dynamics of robot arms, mobile robots, their sensors and
algorithms for controlling them.



Textbook

» no required textbook

» first 6 weeks of course uses notation consistent with Robot
Modeling and Control by MWV Spong, S Hutchinson, M
Vidyasagar



Assessment

» labs/assignments 6 x 5%
» midterm, 30%
» exam, 40%



Introduction to manipulator kinematics




Robotic Manipulators

» a robotic manipulator is a kinematic chain

i.e.an assembly of pairs of rigid bodies that can move respect to one
another via a mechanical constraint

» the rigid bodies are called links
» the mechanical constraints are called joints

7 Symbolic Representation of Manipulators



A150 Robotic Arm

JOINT 3

link 2 L™

JOINT ) %%@
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Joints

» most manipulator joints are one of two types

I, revolute (or rotary)

like a hinge

2. prismatic (or linear)

like a piston

» our convention: joint I connects link 1 — 1 to link |

when joint I is actuated, link I moves
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Joint Variables

» revolute and prismatic joints are one degree of freedom
(DOF) joints; thus, they can be described using a single
numeric value called a joint variable

» (; :joint variable for joint I
I.  revolute

0 = & :angle of rotation of link I relative to link 1 — 1
2. prismatic

d; = d; : displacement of link I relative to link 1 — 1
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Revolute Joint Variable

» revolute
like a hinge
allows relative rotation about a fixed axis between two links

axis of rotation is the z axis by convention

» Joint variable g; = & : angle of rotation of link I relative to
link 1—1

link 1—1

joint I

I Symbolic Representation of Manipulators



Prismatic Joint Variable

»  prismatic
like a piston

allows relative translation along a fixed axis between two links

axis of translation is the z axis by convention

joint variable g; = d; : displacement of link I relative to link I — 1

link 1—1 link i

di

joint I
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Common Manipulator Arrangments

» most industrial manipulators have six or fewer joints
the first three joints are the arm
the remaining joints are the wrist
» it is common to describe such manipulators using the joints of
the arm
R: revolute joint

P: prismatic joint
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Articulated Manipulator

» RRR (first three joints are all revolute)

» joint axes

Z, : waist

Z, : shoulder (perpendicular to z,) 2,
Z, : elbow (parallel to z,) Zy Zy

shoulder

forearm

elbow

|4 Common Manipulator Arrangements



Spherical Manipulator

» RRP

» Stanford arm

shoulder

I5 Common Manipulator Arrangements


http://infolab.stanford.edu/pub/voy/museum/pictures/display/robots/IMG_2404ArmFrontPeekingOut.JPG

SCARA Manipulator

» RRP

» Selective Compliant Articulated Robot for Assembly

Common Manipulator Arrangements



http://www.robots.epson.com/products/g-series.htm

Parallel Robots

» all of the preceding examples are examples of serial chains
base (link 0) is connected to link | by a joint
link | is connected to link 2 by a joint

link 2 is connected to link 3 by a joint ...and so on

» a parallel robot is formed by connecting two or more serial
chains

|7 Parallel Robots


https://www.youtube.com/watch?v=p1Lrz0gPvOA

Forward Kinematics

» given the joint variables and dimensions of the links what is
the position and orientation of the end effector?

|8 Forward Kinematics



Forward Kinematics

» choose the base coordinate frame of the robot

we want (X, Y) to be expressed in this frame

(Xy)?

19 Forward Kinematics



Forward Kinematics
» notice that link 1 moves in a circle centered on the base frame

origin

(Xy)?

YOA

Py
.
.

.

.
““

.

e 5 (a,cos ,,a;,sin 6,)
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Forward Kinematics

» choose a coordinate frame with origin located on joint 2 with
the same orientation as the base frame

(Xy)?

(a,cos ,,a;,sin 6,)
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Forward Kinematics

» notice that link 2 moves in a circle centered on frame 1

(Xy)?

Y, A
(a,cos (6, + 6,),
a,sin (6, + 6,) )
o A= e
¢ =
a / X,
¢ 1 01) (a, cos @, ,a,sin 6,)
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Forward Kinematics

» because the base frame and frame 1 have the same
orientation, we can sum the coordinates to find the position

of the end effector in the base frame (a, cos 6, +a, cos (8, + 6)),
a;sing, +a,sin(6,+6,))

Y, A
(a,cos (6, + 6,),
a,sin (6, + 6,))
L N S A
a, ./ z
¢ 1 93) (a, cos 4, ,a,sin 6,)
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Forward Kinematics

» we also want the orientation of frame 2 with respect to the
base frame

X, and Y, expressed in terms Y2
of Xy and Y,

YOA

Py
.
.

.
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Forward Kinematics

» without proof | claim:

X, = (cos (6, + 6,),
sin (6, + 6,))

Yy, = (-sin (6, + 6,),
cos (6, + 6,))

YOA

25 Forward Kinematics

Yo

.

“““



Forward Kinematics

» find (x,y), x,,and y, expressed in frame 0

YOA
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Forward Kinematics

» find (x,y), x,,and y, expressed in frame 0
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Inverse Kinematics

» given the position (and possibly
the orientation) of the end
effector, and the dimensions

of the links, what are the joint
variables?

YOA

28 Inverse Kinematics

Yo

.

.
““

.

Py
.
.



Inverse Kinematics

» harder than forward kinematics because there is often more
than one possible solution

(X y)

YOA

29 Inverse Kinematics



Inverse Kinematics

law of cosines

b*=a’+a’—2aa,cos(r—06,)=x>+Vy°

(X y)
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Inverse Kinematics

2 2 a2 42
—cos(zr—6,) = X +Y ~a 74
28,8,

and we have the trigonometric identity

—cos(z —6,) =cos(b,)

therefore,

2 2 2 2
X“+y“—a —a
C0SH, = L =C,

28,8,

We could take the inverse cosine, but this gives only one of the two solutions.
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Inverse Kinematics

Instead, use the two trigonometric identities:

sin®@+cos’ 6, =1 tang = 1Y
cosé
to obtain
+./1-C?2
0, =tan™ 2
2

which yields both solutions for &, . In many programming languages you would use the
four quadrant inverse tangent function atan?

c2 = (x*x + y*y — al*al - a2*a2) / (2*al*a2);
s2 = sqgrt(l — c2*c2);

theta2l = atan2(s2, c2);

theta22 = atan2(-s2, c2);

32 Inverse Kinematics



Inverse Kinematics

» Exercise for the student: show that

0, = tanl(l)—tan{ 3,5In &, j
X a, +a, Ccosd,

33 Inverse Kinematics



Spatial Descriptions

34




Points and Vectors

» point :a location in space

» vector : magnitude (length) and direction between two points
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Coordinate Frames

» choosing a frame (a point and two perpendicular vectors of
unit length) allows us to assign coordinates

P
"
0 _
Yo q° p__25_
s
0 _
I—)f( q__15_ _
0
ol Vo:po_qo:i
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Coordinate Frames

» the coordinates change depending on the choice of frame
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Dot Product

» the dot product of two vectors

38

U-V=UV, +UV, +...+UV =U'v

u-v=|ullv|cosé




Vector Projection and Rejection

AN
i o Uu-v
rejection of u fromv || ———V
= > V-V
V
projection of u on v

u-v

—V

V-V

» if u and v are unit vectors (have magnitude equal to 1) then
the projection becomes

>
L9
L9
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Translation

» suppose we are given 0, expressed in {0}

0, =

40



Translation 1

Yo Y1
0y o O
0,

» the location of {1} expressed in {0}

d =0’-0y=| |-| |=
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Translation 1

I the translation vector d} can be interpreted as the location
of frame {]J} expressed in frame {i}

42



Translation 2

a point expressed

in frame {1}
yo 91 1_ B
I—> I—: | _1_
)20 —> )21
OO d 0 01
1
0} i)
» p! expressed in {0}
o _1_ _4_
0 _ dO + 1 _ n _
p-=0,+p o171
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Translation 2

2. the translation vector d} can be interpreted as a coordinate
transformation of a point from frame {j} to frame {i}
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Translation 3

» Y expressed in {0}

3
0:d 0:
q +P 0
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Translation 3

3. the translation vector ¢ can be interpreted as an operator
that takes a point and moves it to a new point in the same
frame

46



Rotation

» suppose that frame {1} is rotated relative to frame {0}

Yo
Y1
R\ )
\\ X1
4 .
N sin ¢
\' ,/’ 9 > O
0, =0 )
€ >
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Rotation 1

» the orientation of frame {1} expressed in {0}

Yo
Y,
'(\ )
“ X,
\ 4
\ /’
\\ ,¢’
\t’/ 0 > X
0, =0, 0
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Rotation 1

I the rotation matrix R} can be interpreted as the orientation
of frame {]J} expressed in frame {i}

49



Rotation 2
» pt expressed in {0}

.11
A ® p =
Yo 1
Y1 A
'(\ )
N\ X
\ ey
\ ’
\\ ,¢9’
\ ,’ s A

0 _ ROl _ cosf -—sinf |1
D= = dine coso |1
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Rotation 2

2. the rotation matrix R} can be interpreted as a coordinate
transformation of a point from frame {j} to frame {i}
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Rotation 3
» " expressed in {0}

q°=R pf’{

52

cosd

—sin@ | 1
cosé |1



Rotation 3

3. the rotation matrix R can be interpreted as an operator
that takes a point and moves it to a new point in the same
frame
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Properties of Rotation Matrices

» RT=R1

» the columns of R are mutually orthogonal
» each column of R is a unit vector

» det R =1 (the determinant is equal to 1)
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Rotation and Translation
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Rotations in 3D
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Xl .XO

Xl'yo

X, - Z,

Y1 X%
Y1 Yo
Y14

Zl.XO

Zl'yo
Z,-Z,




Rotations

57




Properties of Rotation Matrices

» RT=R1

» the columns of R are mutually orthogonal
» each column of R is a unit vector

» det R =1 (the determinant is equal to 1)
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Rotations in 3D

59

Zy

X+ X,

X1 Yo

X - L,

Y1 %o
Y1 Yo
Y14

L+ X,

Z- Yo
Z,-Z,




Rotation About z-axis
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Rotation About x-axis
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Rotation About y-axis

Ly

A

Ly
R\
\\
\\

1

1

1

s
Xo v

62

+'ve rotation



Relative Orientation Example
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Successive Rotations in Moving Frames

I, Suppose you perform a rotation in frame {0} to obtain {I}.
2. Then you perform a rotation in frame {1} to obtain {2}.

What is the orientation of {2} relative to {0}?
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Successive Rotations in a Fixed Frame

I, Suppose you perform a rotation in frame {0} to obtain {I}.
2. Then you rotate {1} in frame {0} to obtain {2}.

What is the orientation of {2} relative to {0}?
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Composition of Rotations

. Given a fixed frame {0} and a current frame {1} and R/

if {2} is obtained by a rotation R in the current frame {1} then use
postmulitplication to obtain:

R=R’ and R)=R.R‘
2. Given a fixed frame {0} and a frame {l} and

if {2} is obtained by a rotation R in the fixed frame {0} then use
premultiplication to obtain:

R’=RR’
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Rotation About a Unit Axis

67

C, =C0S6

S, =sInd
vV, =1-cosé

K,V — K, S,
2
KV, +C,

KV, +K,S,

K
K

X

y

K,V +K,S,
K Vo — kxse

K°V, +C,



Rigid |

Body Transformations

68




Homogeneous Representation

» translation represented by a vector d

vector addition

» rotation represented by a matrix R

matrix-matrix and matrix-vector multiplication

» convenient to have a uniform representation of translation
and rotation
obviously vector addition will not work for rotation

can we use matrix multiplication to represent translation?
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Homogeneous Representation

» consider moving a point p by a translation vector d

0, | [ d, 0, +d,
p+d=|p, |+ d, |=| p,+d,
p, | |d, ] | p,+d,
D, 0, +d,
? —
. 0, 0, +d,
I 1B, | [ p,+d,

not possible as matrix-vector multiplication always leaves the origin unchanged
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Homogeneous Representation

» consider an augmented vector p, and an augmented matrix D

0, 1 0 0 d

) 0 10 d

= D= Y

Ph 0, 001 d,
1 000 1
100 d|p]| [p+d,

Dp, - 010 ajnp, _| Py 0y
0 01 d|np, 0, +d,
o000 1)1}, 1
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Homogeneous Representation

» the augmented form of a rotation matrix Rj,;

72

R3x3

QOO




Rigid Body Transformations in 3D

73



Rigid Body Transformations in 3D

» suppose {1} is a rotated and translated relative to {0}

» what is the pose (the orientation and position) of {1}
expressed in {0} ?

0_
T =7
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Rigid Body Transformations in 3D

» suppose we use the moving frame interpretation (postmultiply
transformation matrices)
translate in {0} to get {0} Dg.

and then rotate in {0’} to get {1} Dg. Rlo'

(0"}
d {1}

Step | {0}

Step 2
75



Rigid Body Transformations in 3D

» suppose we use the fixed frame interpretation (premultiply
transformation matrices)
rotate in {0} to get {0’} R
and then translate in {0} in to get {1} DR

Step |

Step 2
76



Rigid Body Transformations in 3D

» both interpretations yield the same transformation

T'=DR
100 [ | 1 0]
|01 0 |d R, . 0
001 ||| |0
000 1| 000 1
— R3x3 d
000 1
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Homogeneous Representation

» every rigid-body transformation can be represented as a
rotation followed by a translation in the same frame

as a 4x4 matrix

R d
000 1

where R is a 3x3 rotation matrix and d is a 3x| translation vector
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Homogeneous Representation

» in some frame |

points
-
Pi _ p
- 1 —
vectors
vielV
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Inverse Transformation

» the inverse of a transformation undoes the original
transformation

if ] )
R d
T =
000 1
then
T‘lz_ RT  -R'd

000 1
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Transform Equations

{1}

{3}

8l



Transform Equations

» give expressions for:
0
T

T
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Transform Equations
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Transform Equations

» how can you find
T
T
TS

T
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